Vertebrate-like regeneration in the invertebrate chordate amphioxus.
نویسندگان
چکیده
An important question in biology is why some animals are able to regenerate, whereas others are not. The basal chordate amphioxus is uniquely positioned to address the evolution of regeneration. We report here the high regeneration potential of the European amphioxus Branchiostoma lanceolatum. Adults regenerate both anterior and posterior structures, including neural tube, notochord, fin, and muscle. Development of a classifier based on tail regeneration profiles predicts the assignment of young and old adults to their own class with >94% accuracy. The process involves loss of differentiated characteristics, formation of an msx-expressing blastema, and neurogenesis. Moreover, regeneration is linked to the activation of satellite-like Pax3/7 progenitor cells, the extent of which declines with size and age. Our results provide a framework for understanding the evolution and diversity of regeneration mechanisms in vertebrates.
منابع مشابه
Evolution of Retinoid and Steroid Signaling: Vertebrate Diversification from an Amphioxus Perspective
Although the physiological relevance of retinoids and steroids in vertebrates is very well established, the origin and evolution of the genetic machineries implicated in their metabolic pathways is still very poorly understood. We investigated the evolution of these genetic networks by conducting an exhaustive survey of components of the retinoid and steroid pathways in the genome of the invert...
متن کاملAmphioxus makes the cut—Again
The cephalochordate amphioxus is now established as an important model system for understanding the evolution of vertebrate novelties from an invertebrate chordate ancestor. It is also emerging as a serious candidate for studies of organ regeneration. We extend here our previous observations on the European amphioxus´ extensive adult regenerative capacity. The expression of Wnt5 and the presenc...
متن کاملIt's a long way from amphioxus: descendants of the earliest chordate.
The origin of chordates and the consequent genesis of vertebrates were major events in natural history. The amphioxus (lancelet) is now recognised as the closest extant relative to the stem chordate and is the only living invertebrate that retains a vertebrate-like development and body plan through its lifespan, despite more than 500 million years of independent evolution from the stem vertebra...
متن کاملRetinoic acid signaling acts via Hox1 to establish the posterior limit of the pharynx in the chordate amphioxus.
In the invertebrate chordate amphioxus, as in vertebrates, retinoic acid (RA) specifies position along the anterior/posterior axis with elevated RA signaling in the middle third of the endoderm setting the posterior limit of the pharynx. Here we show that AmphiHox1 is also expressed in the middle third of the developing amphioxus endoderm and is activated by RA signaling. Knockdown of AmphiHox1...
متن کاملFunctional characterization of protein 4.1 homolog in amphioxus: Defining a cryptic spectrin-actin-binding site
Vertebrate 4.1 proteins have a spectrin-actin-binding (SAB) domain, which is lacking in all the invertebrate 4.1 proteins indentified so far, and it was therefore proposed that the SAB domain emerged with the advent of vertebrates during evolution. Here we demonstrated for the first time that amphioxus (an invertebrate chordate) protein 4.1, though lacking a recognizable SAB, was able to bind b...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 109 2 شماره
صفحات -
تاریخ انتشار 2012